Historia de Las Funciones....


Mientras que el cálculo diferencial e integral surgió en el siglo XVII, el concepto de función vino a conocerse un siglo despúes, y el limite, entendido de una manera formal y rigurosa, solo a finales del siglo XIX, lo cual difiere de la forma como se presenta actualmente el cálculo, en donde primero se enseñan funciones, luego limites y finalmente derivadas o integrales.


En la obra Introductio in Analysi Infinitorum, Leonhard Euler intenta por primera vez dar una definición formal del concepto de función al afirmar que: ``Una función de cantidad variable es una expresión analítica formada de cualquier manera por esa cantidad variable y por numeros o cantidades constantes''. como puede observarse, esta definición difiere de la que actualmenet se conoce, pues siete años despúes, en el prólogo de las Instituciones, calculo diferencial, afirmó:''


Algunas cantidades en verdad dependen de otras, si al ser combinadas las ultimas las primeras también sufren cambio, y entonces las primeras se llaman funciones de las últimas. esta denominación es bastante natural y comprende cada metodo mediante el cual una cantidad puede ser determinada por otras. asi, si x denota una cantidad variable, entonces todas las cantidades que dependen de x en cualquier forma estan determinadas por x y se les llama funciones de x''.



En la historia de las matemáticas se le dan creditos al matemático suizo Leonhard Euler(1707-1783) por precisar el concepto de función, asi como por realizar un estudio sistemático de todas las funciones elementales, incluyendo sus derivadas e integrales; sin embargo, el concepto mismo de función nació con las primeras relaciones observadas entre dos variables, hecho que seguramente surgió desde los inicios de la matemática en la humanidad, con civilizaciones como la babilonica, la egipcia y la china.



Antes de Euler, el matemático y filosofo francés Rene Descartes(1596-1650) mostró en sus trabajos de geometria que tenía una idea muy clara de los conceptos de ``variable'' y ``función'', realizando una clasificación de las curvas algebraicas según sus grados, reconociendo que los puntos de intersección de dos curvas se obtienen resolviendo, en forma simultanea, las ecuaciones que las representan.


Bernard Bolzano, fue el pionero en el análisis de funciones, en sus trabajos estudio del criterio de convergencia de sucesiones y dio una definición rigurosa de continuidad de funciones. Estudió profundamente las propiedades de las funciones continuas y demostró en relación con éstas una serie de notables teoremas, destacando el denominado teorema de Bolzano: una función continua toma todos los valores comprendidos entre su máximo y su mínimo.


FUNCIONES LINEALES


La funcion lineal es la mas simple dentro de las formas que puede adoptar una relacion entre variables economicas, pero desempeñan un importante papel en la formulacion de los problemas economicos.


f:R--> R/f(x)= ax+b


Estas funciones se caracterizan porque un cambio en la variable independiente (x) provoca un cambio proporcional en la variable dependiente (y). L a tasa de cambio esta representada por la letra a.


Mohammed Ibn Musa Al-Khwarizmi



El más conocido de los matemáticos árabes es Mohammed Ibn Musa Al-Khwarizmi (780-850), conodido como padre del álgebra. Se sabe poco de su vida salvo que vivió en la primera mitad del siglo IX y que trabajó en la biblioteca del califa de Bagdad. Escribió libros sobre geografía, astronomía y matemática. En su obra Artimética "Algoritmi de numero indorum" explica con detalle el funcionamiento del sistema decimal y del cero que usaban en la India. Obra de gran importancia pues contribuyó a la difusión del sistema de numeración indio y al conocimiento del cero.
Debe destacerse la obra de contenido algebráico "Hisab al-yabr wa'l muqqabala", considerada uno de los primeros libros de álgebra. Obra eminentemente didáctica con abundantes problemas para resolver y adiestrar al lector, principalmente, en la resolución de ecuaciones de segundo grado.
Es el autor de uno de los métodos más antiguos que se conocen para resolver ecuaciones de segundo grado. Dicho método, geométrico, se conoce como de completar cuadrado
FUENTE: Godino, J. (2003). Teoría de las funciones semióticas.



FUNCIONES CUADRATICAS


Una función cuadrática es aquella que puede escribirse de la forma:
f(x) = ax2 + bx + c


donde a, b y c son números reales cualesquiera y a distinto de cero.
Si representamos "todos" los puntos (x,f(x)) de una función cuadrática, obtenemos siempre una curva llamada parábola.


BhaskaraMatemático y astrónomo (1114 Bijapur, India, 1185 Ujjain, India)
Bhaskara es también conocido como Bhaskara II o como Bhaskaracharya, que significa "Bhaskara el maestro". Bhaskaracharya es probablemente el matemático indú de la antiguedad mejor conocido. Nació en 1114 en Bijjada Bida cerca de las montañas de Sahyadri, Bijjada Bida es hoy conocido como Bijapur en el estado de Mysore, India. Bhaskaracharya murió en el año 1185, en Ujjain, India.


Fue el último de los matemáticos clásicos de la India. Descubrió el doble signo de los radicales cuadráticos y el carácter anormal de los mismos cuando el radicando es negativo. En su obra Vijaganita aparece por primera vez el intento de resolver la división por cero, indicando que se trata de una cantidad infinita.


Seis trabajos de Bhaskara son conocidos, pero se cree que un séptimo se perdió. Los primeros tres trabajos son los más interesantes desde el punto de vistas matemático. Bhaskara escribe su famoso Siddhanta Siroman en el año 1150. Este libro se divide en 4 partes, Lilavati (aritmética), Vijaganita (álgebra), Goladhyaya (globo celestial), y Grahaganita (matemáticas de los planetas). La mayor parte del trabajo de Bhaskara en el Lilavati y Bijaganita procede de matemáticos anteriores, pero los sobrepasa sobre todo en la resolución de ecuaciones.


Su trabajo matemático parte del de Brahmagupta que ya manejaba el cero y los números negativos. Pero va más allá en su uso, por ejemplo Bhaskara afirma que x^2 = 9 tiene dos soluciones.
Creemos conveniente que tengas conocimiento acerca de....

CONJUNTOS DE NUMEROS REALES

La palabra conjunto generalmente la asociamos con la idea de agrupar objetos, por ejemplo un conjunto de discos, de libros, de plantas de cultivo y en otras ocasiones en palabras como hato, rebaño, piara, parcelas, campesinado, familia, etc., es decir la palabra conjunto denota una colección de elementos claramente entre sí, que guardan alguna característica en común. Ya sean números, personas, figuras, ideas y conceptos.

En matemáticas el concepto de conjunto es considerado primitivo y ni se da una definición de este, sino que se trabaja con la notación de colección y agrupamiento de objetos, lo mismo puede decirse que se consideren primitivas las ideas de elemento y pertenencia.

La característica esencial de un conjunto es la de estar bien definido, es decir que dado un objeto particular, determinar si este pertenece o no al conjunto.
Los objetos que forman un conjunto son llamados miembros o elementos. Por ejemplo el conjunto de las letras de alfabeto; a, b, c, ..., x, y, z. que se puede escribir así:

{ a, b, c, ..., x, y, z}

Como se muestra el conjunto se escribe entre llaves ({}) , o separados por comas (,).
El detallar a todos los elementos de un conjunto entre las llaves, se denomina forma tabular, extensión o enumeración de los elementos.

Dos conjuntos son iguales si tienen los mismos elementos, por ejemplo:
El conjunto { a, b, c } también puede escribirse:

{ a, c, b }, { b, a, c }, { b, c, a }, { c, a, b }, { c, b, a }

En teoría de conjuntos se acostumbra no repetir a los elementos por ejemplo:
El conjunto { b, b, b, d, d } simplemente será { b, d }.

Fuente:Universidad Tecnologica Metropolitanadepartamento De Matematica




No hay comentarios:

Publicar un comentario